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ABSTRACT 

Diagnosis and staging of liver fibrosis is a vital prognostic marker in chronic liver diseases. Due to the inaccuracies and 

risk of complications associated with liver core needle biopsy, the current standard for diagnosis, other less invasive 

methods are sought for diagnosis. One such method that has been shown to correlate well with liver fibrosis is shear wave 

velocity measured by ultrasound (US) shear wave elastography; however, this technique requires specific software, 

hardware, and training. A current perspective in the radiology community is that the texture pattern from an US image 

may be predictive of the stage of liver fibrosis. We propose the use of convolutional neural networks (CNNs), a framework 

shown to be well suited for real world image interpretation, to test whether the texture pattern in gray scale elastography 

images (B-mode US with fixed, subject-agnostic acquisition settings) is predictive of the shear wave velocity (SWV). In 

this study, gray scale elastography images from over 300 patients including 3,500 images with corresponding SWV 

measurements were preprocessed and used as input to 100 different CNN architectures that were trained to regress shear 

wave velocity. In this study, even the best performing CNN explained only negligible variation in the shear wave velocity 

measures. These extensive test results suggest that the gray scale elastography image texture provides little predictive 

information about shear wave velocity and liver fibrosis. 
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1. INTRODUCTION 

In 2016 an estimated 4.9 million adults in the United States were diagnosed with liver disease, resulting in a premature 

death of over 40,000 people1. Liver disease typically progresses through multiple stages. Ongoing, untreated inflammation 

and attempted healing of the liver leads to progressive deposition of collagen and other macromolecules (scar tissue), 

eventually leading to liver cirrhosis. The extent of this deposition in the liver is named fibrosis. Treatment varies based on 

the stage of liver fibrosis and its underlying cause. Effective patient management, including monitoring treatment efficacy, 

requires estimating the fibrosis stage, ideally in a non-invasive manner. The current standard of care to determine a patient’s 

liver fibrosis stage is to sample the patient’s liver via core needle biopsy2. Not only can this procedure lead to severe 

complications such as internal bleeding3, but due to the limited amount of liver volume sampled, liver biopsy suffers from 

sample bias4. A newer diagnostic approach uses shear wave elastography (SWE) to measure the tissue’s intrinsic shear 

wave velocity (SWV). This technique involves mechanically stimulating the liver at a targeted location with a high-

amplitude “push pulse”, also called an acoustic radiation force impulse (ARFI), and measuring the speed (m/s) of the 

resultant lateral shear waves. In liver fibrosis, an increasing amount of interstitial collagen deposition stiffens the liver and 

increases the SWV, which is highly correlated with the severity of liver fibrosis at biopsy2. SWV is now an accepted 

surrogate biomarker for liver fibrosis in clinical practice2. Standard US devices produce gray scale images whose pixel 

intensity value is based on the backscatter signal amplitude (B-mode). Although many premium systems may be loaded 

with the necessary software, many are not equipped with the elastography mode. Therefore, an approach that predicts the 

SWV and hence fibrosis from the liver texture from the B-mode image would be of high practical and clinical significance 

by providing a readily available measurement for physicians to make informed diagnostic decisions. Preliminary work 

suggests that B-mode US image texture can be used for diagnosis and fibrosis estimation. However, the authors of that 

work state that their model’s performance depends highly on the human expert that selects the multiple regions of interest 

(ROIs), and that future work should eliminate or reduce the expert’s role. The purpose of this work is to address the 

question of whether or not the texture in gray scale elastography images whose acquisition parameters are not tailored to 



the subject is predictive of shear wave velocity, using the current state of the art in image interpretation, the convolutional 

neural network (CNN).  

 

2. MATERIALS AND METHODS 

2.1 Study Design and Subjects:  

This retrospective observational study performed between 02/2016 and 02/2017 included 326 patients at risk for chronic 

liver disease who underwent SWE ultrasound exams for noninvasive evaluation of liver fibrosis. The patients’ ages ranged 

from 20 to 78 and consisted of 164 males and 162 females. Our Institutional Review Board approved this study and waived 

the need for informed consent. The study was conducted in compliance with Health Information and Primary 

Accountability Act (HIPAA). 

2.2 Ultrasound Image Acquisition and ROI Definition: 

This study utilized gray scale elastography images of the liver for which the ground truth SWV estimate in m/s for each 

individual US image was also available. Gray scale elastography images are B-mode US images with fixed acquisition 

settings, in contrast to clinical B-mode images whose parameters are subjectively optimized for the patient by the 

sonographer taking into account their degree of obesity and severity of fibrosis, and thus dependent on the sonographer’s 

level of experience and skill. Each grayscale image was obtained using an EPIQ7G (Philips Healthcare, Bothell WA) 

clinical ultrasonography system with elastography capabilities. A sonographer merely needed to choose a SWE ROI (white 

box, Fig 1) in the center of the liver, away from the liver’s boundaries and major blood vessels to minimize confounding 

influence of these structures on stiffness measurements. This selection is readily performed. The SWV was measured 

within this ROI. The gray-scale image acquisition and SWV measurements were repeated 10 times for each patient per 

institutional protocol. Across the patient cohort, the SWV ranged from 0.2 to 9.3 m/s with an average of 1.60 m/s. 

2.3 Deep Convolutional Neural Network Architecture:  

This study applied CNNs to regress the SWV directly from the US texture image. The CNN framework was chosen because 

it automatically learns a hierarchy of filters that are optimal to make a prediction from the training images. CNNs have 

formed the winning approach for image object recognition, including the ImageNet challenge, since 2012. Since 2015, 

they have attained human-level, single-task image interpretation performance6,7. Therefore, the CNN holds one of the best 

chances of finding an association between texture patterns and SWV if one exists. The CNN is a deep neural network with 

a feedforward architecture. Image inputs are passed into a succession of convolutional layers, that transform the inputs 

into a form that makes the prediction easier. The convolutional layers consist of convolutional filters and the filter kernel 

weights from these layers are the hierarchy of features learned for the supervised regression task in our experiments. The 

transformed input from the last convolutional layer is passed into a succession of fully connected layers, the last of which, 

the output layer, consists of a single unit that combines the learned features to output a continuous valued SWV estimate. 

The texture filters applied by the network are optimized through end-to-end learning via backpropagation8. 

2.4 Image Preprocessing:  

The images are preprocessed for three purposes: (1) to crop the image to a large texture ROI that includes just liver pixels, 

(2) to spatially normalize the pixel sizes, and (3) to normalize the pixel intensities across subjects. Advanced fibrosis tends 

to make the liver more nodular due to bridging fibrosis within the interlobular space, with intervening nodular hepatocyte 

regeneration, which could result in a gray-scale image appearance with coarse echotexture. Based on the Nyquist sampling 

theorem, we observe that in order to sample the lowest expected spatial frequencies in the texture image, a larger ROI is 

needed than the elastography ARFI targeting box (Fig. 1, small white box). The texture ROI (Fig. 1, red box) that was 

used is the largest sized rectangle that still includes only liver pixels across our cohort. It is centered on the white target 

ROI but is 5x its width and 1.66x its height. The targeting ROI is 7mm wide x 12mm in height, hence our texture ROI is 

also of consistent dimensions across subjects. The texture ROI is resampled to the same pixel dimensions across all 

subjects. The intensity values of each texture ROI were normalized to have zero mean and unit standard deviation. 



 

Figure 1: An gray scale elastography image (left) and the image region used for CNN prediction (red 

box on right). The white box in both panels shows the ROI positioned by the technologist as the target 

for SWE to measure the SWV. The image region for prediction (right) has dimensions that are 5x the 

width (w) and 1.66x the height (h) of the elastography targeting white box. 

2.5 Network Architecture Optimization:   

To ensure thorough coverage of possibly relevant CNN architectures, a randomized search of 100 architectures was 

conducted. The architectures included an input layer followed by 1 or more convolutional layers, and finally a number of 

fully connected layers. The hyperparameters were randomly chosen from ranges with a step size of one, for each of the 

following network architecture parameters:  

1. Number of convolutional layers: [1,…,10] 

2. Number of filters in each convolutional layer: [2,…,64] 

3. 2D filter kernel size (height and width): [2,…,11] 

4. Number of fully connected layers: [2,…,5] 

5. Number of units per fully connected layer: [3,…,256] 

Across all the architectures tested, batch normalization was inserted with 50% probability after each convolutional layer. 

After the convolutional layers, a max pooling layer with a size of 2x2 was also inserted with 50% probability. After each 

fully connected layer, there was a 50% chance of inserting a dropout layer with a rate of 0.5. Dropout can help suppress 

overfitting. The loss function was mean squared error (MSE) which was minimized with ADAM optimization9 using β1 = 

0.7, β2 = 0.999, and ϵ = 1x10−8. PReLU activation was used for each activation and weights were initialized to small 

random weights around zero using the He normal initialization, which has been shown to be optimal for PEeLU7. A 

maximum of 200 epochs was used along with early stopping. The early stopping used a minimum delta of 0 and a patience 

of 30 epochs. 

The texture images were grouped by patient and randomly partitioned into 85% for training and 15% held out for testing.  

The training data was then split via 5-fold cross validation. All partitions were stratified so that the same distribution of 

SWV in the overall dataset appeared in the training and validation folds and in the test partition. Images from a patient 

were grouped so that a patient’s images appeared only in one partition (training, validation or test). The architectures were 

then trained with Tensorflow running on an Nvidia P100 GPU. Two networks illustrating the range of architectural 

complexity tested are shown in Table 1A and Table 1B. 

2.6 Model Selection:  

As shown in Fig. 2, the median performance of each network over the cross-validation folds was computed and the 

networks were sorted in increasing order of MSE. The architecture with smallest median MSE across folds was chosen as 

the winning architecture. The architecture of the top performing network is shown in Table 1C.  

2.7 Quantification of Human Expert Performance: 

To provide a point of comparison for our automated approach, we conducted an investigation into the performance 

of human experts (radiologists) in classifying the level of fibrosity (high versus low fibrosity). In this investigation 

we selected 10 subjects with very low fibrosity (group mean SWV of 0.57 m/s +/- .13 m/s) and 10 subjects with 

very high fibrosity (group mean SWV of 3.34 m/s +/- .73 m/s). One representative image from each subject was 

chosen and the ROIs from these 20 images, are shown in Fig. 3. We blinded the experts to the true fibrosity level 

and asked them to classify the 20 images as low or high fibrosity. 
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Table 1: Sample of the network architectures tested in the random search. The abbreviation “Conv, 

10x10, 343x156, 30”, describes the size of convolutional filter, feature maps, and # filters. “Dense, 102” 

describes # of units in a fully connected layer. A. One of the largest networks tested. B. One of the 

smallest networks tested. C. The network with the lowest median MSE across the 5 folds. 

Table 1A  Table 1B  Table 1C 

343x156 input image  343x156 input image  343x156 input image 

Conv, 10x10, 343x156, 30  Conv1, 343x156, 3x3, 8  Conv, 6x6, 343x156, 41 

Batch Normalization  Flatten  Batch Normalization 

Max Pooling stride 1  Batch Normalization  Max Pooling stride 1 

Conv, 2x2, 171x78, 31  Dense, 51  Conv, 8x8, 171x78, 30 

Batch Normalization  Dense output, 1  Batch Normalization 

Conv, 6x6, 171x78, 24    Conv, 7x7, 171x78, 9 

Batch Normalization    Batch Normalization 

Conv, 9x9, 171x78, 7    Max Pooling stride 1 

Batch Normalization    Conv, 2x2, 85x39, 26 

Max Pooling stride 1    Batch Normalization 

Conv, 4x4, 85x39, 12    Max Pooling stride 1 

Batch Normalization    Conv, 4x4, 42x19, 57 

Conv, 3x3, 85x39, 46    Batch Normalization 

Batch Normalization    Conv, 8x8, 42x19, 11 

Max Pooling stride 1    Batch Normalization 

Conv, 9x9, 42x19, 18    Max Pooling stride 1 

Batch Normalization    Conv, 8x8, 21x9, 31 

Max Pooling stride 1    Batch Normalization 

Conv, 2x2, 21x9, 29    Max Pooling stride 1 

Batch Normalization    Conv, 10x10, 10x4, 47 

Max Pooling stride 1    Batch Normalization 

Conv, 4x4, 10x4, 48    Conv, 4x4, 10x4, 3 

Batch Normalization    Batch Normalization 

Max Pooling stride 1    Flatten 

Conv, 2x2, 5x2, 51    Batch Normalization 

Batch Normalization    Dense, 95 

Flatten    Dense, 163 

Batch Normalization    Dense, 185 

Dense, 14    Dropout, rate=0.5 

Dense, 141    Dense output, 1 

Dense, 35     

Dense, 25     

Dense output, 1     

 

 



 

Figure 2: The minimum median MSE for the validation data on each network across epochs, ranked from lowest to 

highest. The first architecture (Table 1C) indicated with the red arrow was used later to evaluate performance on the 

on the test data.  

 

 

Figure 3: Gray scale elastography ROIs for 10 high and 10 low subjects. Shown on the left are 10 ROIs from 

subjects with no or little fibrosis and who have the lowest SWV. Shown on the right are 10 ROIs with the highest 

SWV and high fibrosis. These images were used to quantify human expert accuracy.  

High Fibrosis Low Fibrosis 



 

Figure 4: A. Comparison of predicted SWV (m/s) versus actual elastography measured SWV (m/s). The ideal 

predicted=measured line is shown in black, while the actual linear fit line, shown in red, demonstrates only weak 

correlation between the measured and predicted values. B. The Bland-Altman plot showing average of the measured 

and predicted SWV values versus the difference: measured - predicted. The red lines show a 95% confidence interval 

which are +/- 0.848 m/s from the mean. C. The range of SWV for fibrosis stages: low fibrosis (green), significant 

fibrosis (yellow), and advanced fibrosis (red) as described in a pSWE study2. The blue line shows the 95% 
confidence interval of the best performing model can span all three stages. 

3. RESULTS 

3.1 Performance of The Deep Neural Network on predicating SWV 

As shown in Fig. 2, the top performing network achieved the smallest median MSE across folds of 0.34 on the validation 

data. This network was trained on the combined training and validation data and then used to make SWV predictions on 

the held out test gray scale elastography images. It achieved an MSE of 0.22 on the test data. Fig 4A. shows a scatter plot 

of the model’s predicted SWV vs the elastography measured SWV. Fitting a line to the predictions (Fig 4A, predictions 

shown as blue dots, fitted line in red) yielded a slope of 0.062492 with large residuals (r2= 0.009612). This indicates that 

the textural pattern in gray scale elastography images was only slightly associated with SWV. The Bland-Altman plot (Fig 

4B) further confirms this result and suggests that the model’s predictions could be substantially different from the SWV 

measured via elastography. Prior literature has defined the low fibrosis stage to have a SWV of below 1.37 m/s, significant 

fibrosis stage to be 1.37 to 2.2 m/s, and advanced fibrosis and/or cirrhosis to be >2.2 m/s (when using the Philips pSWE 

as in this study)2. In this study the model’s 95% confidence interval is +/- 0.848 m/s (Fig. 4B), which can span all 3 fibrosis 

stages (Fig 4C) indicating that it does not reach clinical significance. Therefore, we suggest that the texture in gray scale 

elastography images is not predictive of the SWV from elastography. 

3.2 Comparison Between Expert Human Performance and The Top Performing Deep Learning Model. 

When quantifying human expert (radiologist) performance (section 2.7) using the gray scale elastography images, we 

found that the experts performed only slightly better than chance, in agreement with our predictive model’s performance. 

Specifically, the mean accuracy of the experts classifying high versus low fibrosity was 58.3% with a standard deviation 



of 7.6%. This suggests that even for an expert in ultrasound interpretation, the gray scale elastography image contains 

insufficient information to differentiate fibrosity levels. This corroborates our finding that machine learning also finds the 

gray scale elastography image to be only slightly associated with fibrosity. We acknowledge that the expert radiologists 

rely on clinical B-mode images, not necessarily gray scale elastography images, and typically take into account many other 

patient measures other than ultrasound image texture when making a clinical diagnosis of fibrosity. However, we note that 

clinical B-mode images are acquired by optimizing imaging settings on per-patient basis by the sonographer and thus 

subject to sonographer skill, potentially introducing a confound into image analysis. 

 

4. NOVELTY 

Our tests add an extensive body of evidence from over 300 patients to help address the hypothesis whether the gray scale 

elastography image texture is predictive of liver shear wave velocity, an established surrogate for fibrosis level. The results 

of our extensive tests on 100 CNN architectures suggest that there is not a significant association between gray scale 

elastography image texture and SWV. 

 

5. CONCLUSION 

The computer vision community has abundant evidence that CNNs are well suited for object and texture recognition in 

images. Therefore, if there were an association between gray scale elastography image texture and SWV, there should be 

CNN architectures that reveals this association. This work demonstrates that, at least for the 326 patients from our hospital, 

and the 100 CNN architectures tested from a wide range of architectures, there is not a substantive association between 

gray scale elastography image texture and SWV. When there is no strong association, a network can memorize training 

data but will not generalize well to held out test data. This is what we observed. To make an informed diagnosis, 

radiologists use a range of information, of which image texture is a small part, however when constrained to use only gray 

scale elastography image texture these CNN results concur with the slightly above chance performance by the radiologists 

to estimate liver fibrosity categories. Possible limitations of this work include: 1) only one gray scale elastography image 

from each liver is taken into account while information indicative of the liver fibrosis stage could be in surrounding liver 

tissue, 2) newer, possibly more precise 2D shear wave elastography has since become available that were not available for 

this study. Also, in order to be least dependent on sonographer expertise, this study focused on the gray scale elastography 

images taken while the SWV is being measured. While this has the advantage of using fixed acquisition settings across all 

subjects, it is possible that clinical B-mode US images with settings such as gain, dynamic range, focus, transmit frequency 

and speckle reduction optimized for each subject could provide more informative texture.  
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