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ABSTRACT 

 

Accurate automated segmentation of brain tumors in MR 

images is challenging due to overlapping tissue intensity 

distributions and amorphous tumor shape. However, a 

clinically viable solution providing precise quantification of 

tumor and edema volume would enable better pre-operative 

planning, treatment monitoring and drug development. Our 

contributions are threefold. First, we design efficient 

gradient and LBPTOP based texture features which improve 

classification accuracy over standard intensity features. 

Second, we extend our texture and intensity features to 

symmetric texture and symmetric intensity which further 

improve the accuracy for all tissue classes. Third, we 

demonstrate further accuracy enhancement by extending 

our long range features from 100mm to a full 200mm. We 

assess our brain segmentation technique on 20 patients in 

the BraTS 2012 dataset. Impact from each contribution is 

measured and the combination of all the features is shown 

to yield state-of-the-art accuracy and speed.  

 

Index Terms— Lesion segmentation, brain tumor, 

MRI, decision forest, texture, symmetry.
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1. INTRODUCTION 

 

There are many diseases that cause lesions in the brain, a 

primary example being brain tumors. Being able to 

automatically and accurately segment tumors allows for 

better treatment planning by reducing inter and intra 

operator error. Brain tumors have many properties that make 

them difficult to segment using MRI. Tumors appear with: 

low contrast, intersubject intensity variability, shape 

variability, and appear at variable locations. In any single 

MR modality the intensity values of the tumor will overlap 

substantially with the intensity values of the healthy brain 

tissue. Therefore to discriminate between healthy tissue and 

tumor, multiple MR modalities such as T1, T2, FLAIR and 

post-Gadolinium T1 are acquired and a segmentation 

algorithm must integrate information from all channels.  

Previously, approaches have been proposed to 

automatically segment brain tumors. Both generative and 

discriminative approaches have been proposed. In this paper 

a discriminative decision forest classifier is constructed. In 

                                                 
*  

such an approach, the posterior class probability   ( ( )  
  {  ( )} 

 )  of the label, L, for voxel   given N observed 

features {  } 
  is estimated directly. Our contributions are 

threefold: (1) We design fast texture features (both gradient 

based and 3D Local Binary Pattern texture called LBPTOP) 

and show how texture improves classification accuracy over 

intensity only features. (2) We present a method for quickly 

and automatically extracting a symmetry map and use it to 

design both symmetric texture and symmetric intensity 

features. We show these features further improve the results 

over non-symmetric features. Symmetric features take 

advantage of the fact that healthy brains are largely 

symmetric, and symmetry can be used with both appearance 

and texture features. (3) We implement long range features 

(up to 200mm) relative to typical brain dimensions (avg 

length 167mm) and demonstrate that using very long range 

features spanning the whole brain gives higher accuracy 

than local features in the immediate vicinity of the voxel to 

classify or medium range features (up to 100mm).  

Recently, several approaches employing the decision 

forest have been proposed. Zikic et al. [9] use context aware 

features along with a generative tissue model. However, 

they do not take advantage of symmetry or texture. Menze 

et al. [5] and Geremia et al. [3] use context rich features 

along with symmetry features and spatial tissue priors for 

segmentation. While there are some commonalities with  

our method, there are some major differences. We 

implement texture features and our implementation of 

symmetry allows for variable neighborhood sizes and 

shapes; they use a point compared to a fixed region. This 

gives our approach more flexibility for estimating 

symmetry. Some texture features were used by Bauer et al. 

[1], but they do not take advantage of symmetry nor long 

range context. The top ranked methods in the BraTS 

challenge, [5] and [9], combine the decision forest with a 

generative model. This paper improves the decision forest, 

which lends itself to improving the overall performance of 

these methods and enabling higher lesion segmentation 

accuracy. 

 

2. TECHNICAL APPROACH 

 

2.1. Decision Forest Voxel Classifier 

 

The decision forest has favorable properties including: it 

can produce maximum-margin boundaries, it is resistant to 

overfitting, and it performs intrinsic feature selection. This 
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has made it a leading classification approach. It is an 

ensemble approach using the outputs of T separately trained 

decision trees. Each tree differs due to randomness injected 

during the training of each node. We inject randomness 

through the selection of a random subset of features and 

thresholds to try at each node, because this combination was 

shown [4] to give superior performance over bagging. The 

feature pool we use to randomly create a candidate set 

includes: modality, feature type and feature parameters (size 

and long range offset). During training at each node, the 

feature parameters that give the maximum information gain 

is found and stored with the node. During testing, these 

winning features are used to guide the input voxels to a leaf 

where the T class posteriors from the trees are averaged 

together to give a final, maximum a posteriori voxel label. 

 

2.2. Long Range Contextual Features 

The appearance of neighboring voxels gives information 

on how the observed voxel should be classified. We 

hypothesize that to correctly distinguish pathology from 

healthy tissue at a voxel, both short range (neighboring 

voxels) and very long range information will be useful.  

Many features, such as Haar- like features, use only the 

immediate neighborhood, therefore we implement many 

Haar-like features but rather than keeping the sub-rectangles 

in each box adjacent, we allow them to be separated by 1 to 

200mm. The appearance features we use include the 

difference in the mean intensity of two cuboidal probe 

regions, as illustrated in Fig. 1A. This feature is the 

difference between the mean value from the two regions (R1 

and R2) at vector offsets (   and   ) from the voxel P, and 

with an averaging box size B (mm) which can vary from 1 

to 200mm in each dimension. Each of these features is a 

parameter which is explored by the forest by testing 

parameterized features at each node. With these intensity 

features described, we now turn our attention to our first 

contribution, the design of texture features.  

 

2.3. Texture Features 

Texture is a compact representation of a local 

neighborhood. In brain MRI, texture gives a description of 

the underlying tissue in a region. We use two types of 

texture features: gradient magnitude and Local Binary 

Patterns (LBP).  We use the gradient magnitude in the axial, 

coronal, and sagittal directions (assuming basic intersubject 

alignment via affine registration) because this fundamental 

description of the local neighborhood of a voxel is fast to 

compute and, we hypothesize, discriminative for tumor 

segmentation. LBP features describe the texture at an 

observed voxel by using its intensity to threshold the voxel’s 

local neighborhood. The thresholded neighborhood is then 

encoded as a binary number. This number is mapped into a 

uniform pattern space making it rotationally invariant and 

yielding 59 possible values. LBP is extended to an 

approximate 3D feature, by computing the 2D LBP in each 

of three orthogonal planes (TOP) (axial, coronal, and 

sagittal in our case) hence the feature is called LBPTOP  [8]. 

Other true 3D extensions of LBP are possible, however 

LBPTOP is computationally attractive and affords the 

ability to select the plane for feature computation when data 

is acquired non-isometrically, as is the case in BraTS data.  

To illustrate consider Fig. 2. Upper right shows the input 

intensity image with bright tumor and gray edema. The 

corresponding LBP images computed in the axial, coronal 

and sagittal directions are shown in the remaining quadrants. 

We observe LBP patterns are visibly correlated with the 

tumor and edema regions. We combine these texture maps 

with the long range context concept described previously to 

efficiently produce long range texture context. 

 

2.4. Symmetry Features 

A healthy brain exhibits bilateral symmetry causing a 

region reflected across the mid-sagittal-plane (MSP) to look 

similar, while areas affected by pathology appear different. 

Before symmetry features can be calculated, the MSP must 

be estimated. We achieve this by locating symmetric interest 

points which vote for a MSP as in [6]. Once the MSP is 

known, the contralateral reflection of every point can be 

estimated. The difference between the mean of the observed 

region and the mean of the reflective region is used, as 

illustrated in Fig. 1B. Averaging over the region helps 

account for mass effect and MSP estimation error. The size 

 
Figure 1: (A) Long range contextual features use information 

from around the brain. (B) Symmetric feature measuring the 

difference from the observed region and contralateral region. 
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Figure 2: Example of the LBPTOP feature in the Flair 

modality. Note the edges of the edema and tumor are easier to 

distinguish in the LBP images. 
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of the averaging box is a random parameter in the training 

process. We further combine our texture measures with 

symmetry by computing the texture difference with the 

symmetric region. This symmetric texture contribution plays 

a large role in regions with significant texture (e.g. sulci).  

 

3. EXPERIMENTAL RESULTS 

 

3.1. Dataset 

 

The dataset we use for experimentation is from the MICCAI 

2012 Mutlimodal brain tumor segmentation (BraTS) 

challenge dataset. It is comprised of 20 real high grade (HG) 

glioma patients with the following MR modalities: T1, T2, 

FLAIR and post-Gadolinium T1. We also use the 50 

simulated HG and low grade (LG) BraTS cases. The data 

channels are co-registered, skull-stripped and resampled to 

1mm isometric volume voxels. To make the intensities 

across the subjects more consistent, we mode-align (shift 

only) the intensity histograms across subjects per modality. 

 

3.2. Effect of Feature Parameters 

3.2.1. Maximum Box Size 

In most decision forest implementations, only individual 

samples (e.g. voxels) are used as the features [7]. For brain 

lesion segmentation, however, individual voxels can be 

affected by noise or imaging artifact, therefore, to make 

features more robust we construct features from cuboidal 

regions of voxels. Fig. 3A shows the effect of increasing the 

maximum side length of the cuboidal regions from 3mm to 

20mm with a minimum of 1mm on a side. The light blue 

curve shows the Dice overlap of the tumor+edema label, 

when using separate real HG glioma cases as training and 

testing through fivefold cross-validation. The red curve 

shows the Dice overlap for the 50 simulated HG and LG 

glioma cases. We observe that the simulated cases are easier 

to segment than the real HG cases. This is somewhat 

expected; tumors in the simulated data have slightly higher 

contrast to healthy tissue than in the real cases. More 

importantly, we observe that when varying just this 

parameter, i.e. allowing the forest to try larger and larger 

features at each node during training, the accuracy of the 

forest monotonically increases until an asymptote of roughly 

0.62 Dice for HG glioma and 0.92 for simulated HG and LG 

tumors. This suggests that large 3D cuboidal features (up to 

20mm on a side) are useful for discriminating healthy and 

pathological tissues. 

3.2.2. Effect of Long Range Feature Distance 

Traditionally, voxel classifiers are trained with local features 

which sample the target brain in the immediate vicinity 

(within several mm) of the voxel to be classified. However, 

we use very long range features which extend up to 200mm 

from the voxel to be classified, because even in the 

relatively constrained space of the intra cranial cavity, such 

long range features, which may span the whole brain, yield 

higher accuracy than local features. Fig. 3B shows the  

segmentation improvement. Using the real 20 HG datasets, 

the Mathew’s coefficient (similar to dice) is of higher 

accuracy for 200mm than 100mm both when considering 

tumor+edema together as one class and when they are 

considered separately. While in [2] it was shown that a 

range of 200mm is beneficial to localize organs in full body 

CT, we show the nonobvious result that such long range 

features are also beneficial to segment brain MRI. 

3.2.3. Qualitative Effect of Symmetry 

Symmetry uses the patient as their own control. Fig. 4A, 

shows the input FLAIR image for subject 1 in column 1 and 

the true tumor+edema segmentation in light blue in column 

2. Healthy labels are transparent. The tumor+edema 

segmentation using traditional, non-symmetric, intensity 

only features without texture is shown in column 3. We 

observe the result is substantially improved (column 4) by 

adding symmetric intensity features, which corrects false 

negatives and false positives (arrows, column 3). 

 

3.2.4. Qualitative Effect of Texture 

Texture features compactly represent the pattern of 

intensities in the local neighborhood around a voxel. Fig. 4B 

shows the input FLAIR image for subject 2 in column 1, 

while the true tumor+edema segmentation is in column 2. 

The tumor+edema segmentation using traditional, non-

symmetric intensity features without texture is shown in 

column 3. The result is notably improved (column 4) when 

texture features are added. Texture corrects missed tumor 

voxels (false negatives) and false positives (arrows, column 

3). 

3.2.5. Qualitative Effect of Texture + Symmetry  

Fig. 4C shows a slice from the same subject 3. We observe: 

(a) intensity only features yield many false negative voxels 

(red, column 3), (b) adding texture or symmetry corrects 

many of them (columns 4,5) and (c) adding both texture and 

symmetry (column 6) yields the best segmentation: few 

false positives (blue) and false negatives (red). 

 
Figure 3: (A) Allowing the box size to range from a small 

(1mm) to large (20mm), rather than 1mm to 3mm, yields the 

optimum accuracy. (B) Allowing the long range context 

features to span 200mm yields the highest accuracy. 
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3.2.6. Quantitative Feature Impact  

In Fig. 5 we quantitatively assess the impact of texture, and 

combined texture and symmetry. These tests use just 8 of 

the 20 HG subjects to train the forest to rapidly detect 

relative changes in performance. As a baseline, single voxel 

(side=1mm) intensity features are used (dark blue bars). For 

tumor+edema segmentation a dice of 0.49 is attained. 

Allowing larger cuboidal features (side≤10mm ) dice 

increases to 0.6 (light blue). Adding texture features 

increases dice to 0.625 (pink); while adding symmetric 

texture and symmetric intensity features increases dice to 

0.655 (orange). 

In subsequent experiments we doubled the number of 

training subjects from 8 to 16. This boosts intensity only 

dice for tumor+edema to 0.64 while the intensity+texture 

result increases to 0.696. All other parameters are held 

constant. We also performed these tests on the 25 synthetic 

BraTS subjects obtaining dice of 0.92 (red curve in Fig. 

3A). Our dice scores for tumor+edema (0.696 real HG, 0.92 

synthetic HG) compare to the best reported during the 

BraTS challenge: 0.7 to 0.8 for real HG and 0.9 for synthetic 

HG. Segmentations were performed rapidly requiring just 

1.5 seconds per test brain volume on an Intel Core 2 Quad 

core CPU (2.4GHz) with 16GB RAM.  

 

4. CONCLUSIONS 

To the best of our knowledge, this paper is the first to show 

that in brain analysis an extremely long range of 200mm 

yields higher segmentation accuracy than medium range 

features (100mm). We also show that gradient and LBPTOP 

based texture features improve segmentation accuracy. We 

present a method for extending the texture and intensity 

features to symmetric texture and symmetric intensity 

features and show these features further improve classifier 

accuracy. The winning methods of the BraTS 2012 

challenge used the decision forest as a central component. 

We suggest that combing our improvements to the decision 

forest with these hybrid generative-discriminative methods 

will enable new state of the art performance for brain lesion 

segmentation. 
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Figure 5: Performance monotonically increases with increased 

box size, adding texture, and adding symmetry + texture. 
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Figure 4: Qualitative results from texture and symmetry tests. A) When symmetry is introduced many false positives and negatives are 

corrected. B) Adding texture also corrects many false negatives.  C) Adding symmetry and texture yields best segmentation (green-true 

positive, blue-false positive, red-false negative, clear-true negative). 
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